Research Trends in Organic Light Emitting Diode
نویسندگان
چکیده
منابع مشابه
Micro-Cavity in Organic Light-Emitting Diode
The study on micro-cavity in organic light-emitting diode(OLED) demands understanding the theory of multi-layer films. It is because OLED is basically an optical device and its structure consists of organic or inorganic layers of sub-wavelength thickness with different refractive indices. When the electron and holes are injected through the electrodes, they combine in the emission layers emitti...
متن کاملOptimization of organic light emitting diode structures
This paper was published in Proceedings of SPIE 5277 (2004) and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of...
متن کاملField Emission Organic Light Emitting Diode
In recent years, the developments in the OLEDs have gradually reached very advantageous of existence. These advantageous characteristics include self-luminous, wide viewing angle and low power consumption, etc. which make OLEDs very useful for numerous display applications and lighting devices. To effectively improve the characteristics of an OLEDs, there are many ways to be adopted. Such as: (...
متن کاملFar-field radiation of photonic crystal organic light-emitting diode.
Utilizing the near- to far-field transformation based on the 3-D finite difference time domain (FDTD) method and Fourier transformation, the far-field profile of a photonic crystal organic light emitting diode is studied to understand the viewing angle dependence. The measured far-field profiles agree well with those of the simulation. The enhancement of the extraction efficiency in excess of 6...
متن کاملMulti-spectral imaging with infrared sensitive organic light emitting diode
Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Chemistry for Engineering
سال: 2015
ISSN: 1225-0112
DOI: 10.14478/ace.2015.1077